

Characterizing Uncertainty in Reservoir Inflow Forecasts

Rob Hartman

Hydrologist in Charge

California-Nevada River Forecast Center

Approaches

- Statistical (regression based)
 - Traditionally applied to volumetric water management forecasts.
- Error Propagation
 - Applicable to headwater basins for near-term forecasts.
- Ensemble Techniques
 - Applicable across all time domains and locations within river systems.

Error Propagation

Reconfiguration of model into "state-space".

- Uncertainty is propagated through the model states as a natural consequence of operations.
- Requires the estimation of uncertainties associated with the model itself and all of the inputs.

Folsom Reservoir Inflow

Applied and operated on the American River since 1998.

Operational Folsom Reservoir Inflow Forecasts

- 5 day inflows (6 hour intervals).
- Variance of instantaneous 6 hour inflows.
- Variance of 6 hour volumes.

- Automatically generated and made available to USBR/CVO.
 - minimum 2x/day winter.

Sources of Uncertainty

Model Configuration

Benefits of SS-SAC

- Model States Updated.
 - more accurate model states.
 - more accurate simulation and forecasts.
- Forecast Uncertainty estimated.

Risks of SS-SAC

Susceptible to inaccurate streamflow measurements.

 Magnitude of contributing uncertainties must be reasonably accurate.

Non-obvious (black box) process.

Limitations of SS-SAC

- Uncertainty in snow model (and states) not integrated into system.
- Difficult to apply to non-headwater locations.
 - Techniques for propagating uncertainty downstream through routing reaches and reservoirs have not been developed.
- Customers not well prepared to deal with forecast variances.

Ensemble Forecasting

- More consistent with existing modeling system and operations.
- Effectively deals with temporal and spatial correlation.
 - Time and space relationships inherent in historical model inputs developed for calibration.
- Ability to incorporate and use short, medium, and long range weather and climate forecasts.

ESP Process

Use of Weather and Climate Forecasts

Historical MAT and MAP

Adjustment System Adjusted Historical MAP and MAT

Traditional ESP Applications

- Medium range snowmelt forecasts.
- Long range volume forecasts.
 - Complements traditional regressionbased procedured.
- Peak flows, low flows, etc.

ESP Trace Ensembles

ESP Trace Ensemble of W F CARSON-WOODFORDS

Latitude: 38.8 Longitude: 119.8

Forecast for the period 11/7/2001 24h - 9/29/2002 24h

This is a conditional simulation based on the current coditions as of 11/7/2001

Mean Weekly Flows

But we really need ensembles for the next 5 days at 6 hour intervals!

Useful for:

Hydrologic Forecasters
Emergency Services Community
Water Mangers (Reservoir/Flood Control Operations)

Short-term ESP Process

Short-term Ensemble Objectives

- Generate short-term weather inputs.
 - Precipitation (6 hourly)
 - Temperature (6 hourly)
- Preserve spatial and temporal relationships.
- Preserve skill in deterministic precipitation and temperature forecasts.

Precipitation Calibration

- Observed Marginal Statistics (Climatology)
 - POP
 - Conditional mean
 - Conditional Cv
- Forecast Marginal Statistics (Climatology)
 - POP
 - Conditional mean
 - Conditional Cv
- Coefficient of correlation between transformed values of forecasts and observations

Temperature Calibration

- Observed Marginal Statistics (Climatology)
 - Conditional mean
 - Conditional Cv
- Forecast Marginal Statistics (Climatology)
 - Conditional mean
 - Conditional Cv
- Coefficient of correlation between transformed values of forecasts and observations

Simple Explanation

- Historical time series are shifted within their observed distribution (climatology).
- The degree of shift is associated with the level of skill as exhibited in the forecast climatology.
- Simple extreme examples:
 - If there is NO SKILL in forecasting precipitation on day 5, then the precipitation ensembles will reflect pure climatology.
 - If there is PERFECT SKILL in forecasting precipitation on day 1, then the precipitation ensembles will all be equal to the deterministic forecast.

6 Hour Precipitation - Ensembles

6 Hour Precipitation Expected Values

6 Hour Temperature - Ensembles

6 Hour Temperatures Expected Values

Project Status

- Ready to begin generating and reviewing
 - Precipitation ensembles
 - Temperature ensembles
- Working on processing the inputs through the operational hydrologic models.
 - Within next month
- Prototyping operational environment
 - This winter

Next Steps

- Integrate short-term ensembles with those shifted to reflect the medium and long range weather and climate forecasts. (hours to months)
- Re-engineer operational forecast system to take full advantage of the process.
- Collect data to validate forecast information and develop and provide meaningful reliability metrics.
- Assist customers/partners with appropriate interpretation and use of risk-based information.

California-Nevada River Forecast Center

